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Abstract. In this paper we develop a two-grid convergence theory for the parallel-in-time
scheme known as multigrid reduction in time (MGRIT), as it is implemented in the open-source
XBraid package [29]. MGRIT is a scalable and multi-level approach to parallel-in-time simulations
that non-intrusively uses existing time-stepping schemes, and that in a specific two-level setting is
equivalent to the widely-known parareal algorithm. The goal of this paper is two-fold. First, we
present a two-level MGRIT convergence analysis for linear problems where the spatial discretization
matrix can be diagonalized, and use this to analyze our two basic model problems, the heat equation
and the advection equation. One important assumption is that the coarse and fine time-grid propa-
gators can be diagaonalized by the same set of eigenvectors, which is often the case when the same
spatial discretization operator is used on the coarse and fine time grids. In many cases, the MGRIT
algorithm is guaranteed to converge and we demonstrate numerically that the theoretically predicted
convergence rates are sharp in practice for our model problems. The second goal of the paper is
to explore how the convergence of MGRIT compares to the stability of the chosen time-stepping
scheme. In particular, we demonstrate that a stable time-stepping scheme does not necessarily imply
convergence of MGRIT, although MGRIT with FCF-relaxation always converges for the diffusion
dominated problems considered here.
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1. Introduction. Research into parallel-in-time algorithms is currently being
driven by the rapidly changing nature of computer architectures. Future speedups
will come through an increasing numbers of cores, and not through faster clock-
speeds. Previously, increasing clock-speeds compensated for decreasing time step
sizes when spatial resolution was increased, leading to stable or even reduced overall
runtimes. However, clock-speeds have become stagnant, leading to the sequential time
integration bottleneck. For instance, this bottleneck occurs when the strong scaling
limit in space is reached and no speedup can be achieved by distributing the fixed
spatial problem on more cores. The bottleneck can also occur for codes that weakly
scale with space-only parallelism. Here, successive spatial refinements with a fixed
spatial problem size per core result in a (roughly) constant wall clock time per time
step. However, for stability and/or accuracy reasons the number of time steps Nt
must also increase, thus making the runtime proportional to Nt. The bottleneck can
only be avoided by exploiting parallelism in the time dimension.

Efforts to develop parallel-in-time methods date back at least as far as 1964 [22],
with the review paper [9] providing an excellent introduction to the field. One of
the most popular algorithms is parareal [17]. Parareal has been extensively analyzed
[18, 25, 4] and can be interpreted as a two-level multigrid method [11]. However,
this implies that there is always a large coarse-level sequential solve, thus limiting
parallelism to the finest level. The parallel spectral deferred correction schemes of
Minion and Williams [21, 20] are well known and popular, but require an expensive
spectral deferred correction time stepper. Additionally, the coarsest time-grids can
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be large, as in [24], where they number in the hundreds of points and would grow
if the time domain were lengthened. There are also various multigrid methods that
parallelize both space and time for parabolic [14, 27] as well as hyperbolic [5, 30]
problems. With the exception of parareal, introducing any of the above parallel-in-
time methods into an existing application code can be very intrusive and require a
major code rewrite. This is because these methods assume space and/or time to be
discretized in a very specific way. The MGRIT method [6] was developed to provide
a less intrusive approach to time-parallelism, which has been implemented in the
open-source XBraid package [29]. MGRIT is fairly nonintrusive in that it allows an
existing sequential time-stepping code to be parallelized by wrapping it according to
the XBraid software interface. Furthermore, MGRIT is a full multi-level method,
thus allowing for true O(N) performance for N time steps.

In this paper we analyze the convergence properties of MGRIT in the two-level
setting with two different relaxation schemes, known as F- and FCF-relaxation. Our
analysis includes parareal as a special case because it is equivalent to MGRIT with F-
relaxation [11]. In the following, parareal and MGRIT with F-relaxation refer to the
same algorithm. Previous analyses of parareal include [11, 10, 1, 17, 26]. While these
studies have added much to the understanding of parareal, our paper distinguishes it-
self in a few key ways. Most importantly, we incorporate the effects of FCF-relaxation
into the analysis and describe how it improves convergence and stability. We develop
a general convergence analysis that we evaluate numerically for two important matrix
classes (symmetric and normal), corresponding to important model problems (heat
and advection), illustrating that our bounds are sharp. An additional novelty is that
the convergence bound is a function of the temporal coarsening factor, which allows us
to show that in some cases only certain coarsening factors yield a convergent method.
This allows us to show the novel result of scalable behavior for advective problems in
certain cases for small coarsening factors. Lastly, we compare the standard stability
regions for implicit Runge-Kutta schemes of orders 1 through 3 with the convergence
regions of MGRIT with F- and FCF-relaxation.

In [26] a stability condition for parareal is derived and provides some insight into
when parareal converges, particularly for the case of stiff ordinary differential equa-
tions (ODEs) and very small time steps. Our work is more general, as discussed
above. In [10], a convergence bound for parareal is derived for nonlinear problems
under fairly weak continuity assumptions. The bound, however, is not used as a pre-
dictive tool for convergence. The results explore empirically the behavior of parareal
for some model nonlinear problems. The papers [1, 17] explore the order of parareal,

e.g., an order p time-stepping method converges like O(δt
p(k+1)) after k parareal it-

erations and time step size δt. However, these bounds are not sharp [11]. The work
[1] additionally provides theoretical commentary on what conditions are required of
the time-stepping method for parareal to converge. However, the authors do not
extend these requirements to explore the relationship between parareal stability and
combinations of commonly used time-stepping routines, which is a goal here.

As was mentioned above, equivalence was established in [11] between parareal
and a two-grid multigrid cycle with F-relaxation. This paper additionally derives
convergence bounds for parareal that are related to our results for MGRIT with F-
relaxation. However some key differences remain. Overall, our analysis includes the
effects of FCF-relaxation and is more typical of a standard analysis for a linear solver
where we bound the norm of the error-propagator. This leads to our approach of di-
agonalizing the spatial discretization, rather than applying Fourier techniques to the
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continuous problem as in [11]. More specific differences are as follows. Our conver-
gence bounds include the temporal coarsening factor as a parameter, and as such we
can do a more detailed convergence analysis of MGRIT with F- and FCF-relaxation.
For instance, some of the bounds in [11] are very pessimistic when compared to results
for smaller temporal coarsening factors. A final difference is that we explore in-depth
how the stability of the time-stepper relates to the convergence of MGRIT.

The paper [8] analyzes MGRIT convergence by diagonalizing the two-grid error
propagator with Fourier modes, which is very similar to our approach of diagonalizing
the time-stepper with eigenmodes. However, there are important distinctions with
our paper. The paper [8] seeks a general analysis tool to predict convergence rates
for MGRIT, waveform multigrid [16, 12, 28, 15], and standard spatial multigrid for
highly advective problems. As such, the analysis in [8] spends only a portion of its
time on MGRIT and leaves much to explore regarding its convergence, even in the
limited two-grid setting. By focusing our analysis exclusively on MGRIT, we achieve
a number of novel results. The reduction nature of MGRIT considerably simplifies
the two-grid analysis as the solution on the fine-grid can be eliminated. We examine
MGRIT for both symmetric and normal spatial discretizations, allowing us to consider
advection, whereas [8] considered only MGRIT for the heat equation. We also provide
theoretical insight into the insensitivity of MGRIT to the temporal coarsening factor
for parabolic problems [6]. Lastly, our paper explores MGRIT for a variety of time-
stepping schemes, where [8] primarily considers the backward Euler method.

Overall, our analysis has the limitations that we consider only linear problems in
the two-grid setting where the coarse and fine time steppers share the same eigen-
vectors. This is often the case when the same spatial discretization operator is used
for both grids. However, the simple examples considered here vividly illustrate the
strengths and weaknesses of the algorithm. We note that MGRIT can be trivially
extended to the nonlinear setting with the full approximate storage (FAS) multigrid
[2] as described in [7].

The rest of the paper is organized as follows. We begin Section 2 with an overview
of the MGRIT algorithm. In Section 2.1, we derive the two-grid error propagator,
with Section 2.2 giving an alternate derivation following standard Schur complement
notation. In Section 2.3, we derive our theoretical convergence bound, followed by its
application to ODE systems in Section 2.4. In Section 2.5, we explore the stability
regions for implicit Runge-Kutta methods of order one through three, followed by
consideration of the special cases of purely real and purely imaginary spatial eigen-
values. In Section 3 we give numerical results, first for parabolic and then hyperbolic
problems, as examples of purely real and purely imaginary spatial eigenvalues, re-
spectively. We then give special attention to the case of artificial dissipation which
corresponds to complex-valued spatial eigenvalues. Conclusions are given in Section 4.

2. The MGRIT algorithm. The MGRIT algorithm is an iterative method for
solving time-stepping problems,

u0 = g0,

uj = Φjuj−1 + gj , j = 1, 2, . . . , Nt.
(2.1)

Here, the solution vector uj ∈ RNx and we consider the case where Φj = Φ is a
square matrix that does not depend on j. In many applications, uj corresponds to
an approximation of some time-dependent function q(tj) : R → RNx , where time is
discretized on a grid tj = jδt, j = 0, 1, . . . , Nt, and δt = T/Nt > 0 is the time step.
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Fig. 2.1: Fine- and coarse-grid temporal meshes with coarsening factor m. F-points
(black) are present only on the fine-grid, whereas C-points (red) are on both the fine-
and coarse-grid.

Sequential time stepping solves (2.1) by forward substitution, which has optimal
complexity, O(Nt), but is also sequential. MGRIT, instead, achieves parallelism in
an iterative method that combines the original time-stepping problem with a coarser
approximate representation. The method coarsens in time with an integer factor
m > 1 yielding a coarse time grid of NT = Nt/m points (Tj) and a coarse time step
∆t = mδt. This coarse time grid induces a partition of the fine grid into C-points
(associated with coarse grid points) and F-points, as visualized in Figure 2.1.

By applying (2.1) recursively, we get

(2.2) ukm = Φukm−1 + gkm = Φ (Φukm−2 + gkm−1) + gkm = . . .

= Φmu(k−1)m + g̃km, k = 1, 2, . . . , NT ,

where

(2.3) g̃km = gkm + Φgkm−1 + . . .+ Φm−1g(k−1)m+1,

Thus, all F-point values can be eliminated from the time-stepping problem, resulting
in the equivalent coarse grid problem at all C-points

u0 = g0,

ukm = Φmu(k−1)m + g̃km, k = 1, 2, . . . , NT .
(2.4)

Unfortunately, this problem is not any easier to solve than (2.1). Instead, MGRIT
approximates the exact coarse grid time-stepping operator by introducing

Φ∆ ≈ Φm.

A fundamental difference from sequential time-stepping, where the solution at one
time point only depends on the solution at the previous time point, is that MGRIT
simultaneously computes the solution at all time points and needs to store the solution
at all C-points.

Algorithm 1 presents the two-level MGRIT algorithm, which we proceed to ex-
plain in detail. To obtain a multi-level method, apply the algorithm recursively
in Step 4. Note that the initial solution guess is passed through the variables uj ,
j = 0, 1, . . . , Nt, which are overwritten by the solution upon convergence. To em-
phasize that uj corresponds to a C-point for all j = km, k = 0, 1, . . . , NT , we write

u
[c]
km. The remaining indices correspond to F-points and are indicated by u

[f ]
km+q,

q = 1, 2, . . . ,m − 1. The notational convenience of emphasizing F- and C-points in
this way is used only in this section.
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Algorithm 1 MGRIT(Φ, Φ∆, u, g)

1: repeat
2: Relax the approximate solution using Φ.
3: Compute the residual on the coarse grid with Φ.
4: Solve the coarse grid correction problem using Φ∆.
5: Correct the approximate solution at the C-points.
6: Update the solution at the F-points with Φ.
7: until norm of residual is small enough

Relaxing the approximate solution. The first step of the algorithm relaxes (prop-
agates) the approximate solution. There are two fundamental types of relaxation:
F- and C-relaxation. The F-relaxation updates the F-point values based on the C-
point values, with each updated F-interval of m − 1 points independent of the other
F-intervals,

(2.5)

u
[f ]
km+1 ← Φu

[c]
km + gkm+1,

u
[f ]
km+2 ← Φu

[f ]
km+1 + gkm+2,

...

u
[f ]
(k+1)m−1 ← Φu

[f ]
(k+1)m−2 + g(k+1)m−1,


for k = 0, 1, . . . , NT − 1.

C-relaxation does the opposite: it updates each C-point value based on the preceding
F-point value, with each C-point update independent of the other C-points,

u
[c]
0 ← g0,

u
[c]
km ← Φu

[f ]
km−1 + gkm, for k = 1, . . . , NT .

(2.6)

We remark that both F- and C-relaxation can be performed in parallel. The re-
laxation in step 2 of Algorithm 1 is either an F-relaxation or an FCF-relaxation.
An F-relaxation is performed in both cases. In case of FCF-relaxation, the initial
F-relaxation is followed by a C-relaxation and a second F-relaxation. The update
sequence during FCF-relaxation is illustrated in Figure 2.2

Computing the residual on the coarse grid. The residual on the coarse grid is
computed based on the relaxed approximate solution according to

r
[c]
0 ← g

[c]
0 − u

[c]
0 ,

r
[c]
km ← g

[c]
km − u

[c]
km + Φu

[f ]
km−1, k = 1, 2, . . . , NT .

(2.7)

The residual norm used for halting is the standard Euclidean norm of r[c].
Solving the coarse grid correction problem using Φ∆. MGRIT defines an approx-

imate coarse grid correction meant to approximate the error, which satisfies

c
[c]
0 = r

[c]
0 ,

c
[c]
km = Φ∆c

[c]
(k−1)m + r

[c]
km, k = 1, 2, . . . , NT .

(2.8)

In this paper, we study the two-grid version of MGRIT, and solve this equation with
forward substitution, which is a sequential O(NT ) operation. The recursive version
of MGRIT uses a hierarchy of coarser grids to obtain the correction, and will not be
described here; see [6].
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Fig. 2.2: The update sequence during FCF-relaxation. The red and black time points
indicate C-points and F-points, respectively. Each blue arrow implies an application
of Φ to the approximate solution at the preceding time point.

Correcting the approximate solution on the coarse grid. The approximate coarse
grid correction from the previous step is used to update the C-points of the approxi-
mate solution according to

(2.9) u
[c]
km ← u

[c]
km + c

[c]
km, k = 0, 1, . . . , NT .

Each correction can obviously be performed in parallel.

Updating the solution at the F-points with Φ. Given the approximate coarse
grid solution values, the approximate solution at the F-points are computed by F-
relaxation (2.5). The observant reader realizes that this update is redundant because
the same operation will be performed by the relaxation in the subsequent iteration.
Hence, it is only necessary to update the solution at the F-points if the residual is
smaller than the tolerance, in which case the MGRIT iteration is about to be termi-
nated.

2.1. Error propagation for one iteration of MGRIT. Let vj be an approx-
imate solution of (2.1), where the error is defined by ej = uj − vj . The residual on
the fine grid satisfies

r0 = g0 − v0,

rj = gj − vj + Φvj−1, j = 1, 2, . . . , Nt.

We want to derive formulas for how the error evolves during one MGRIT iteration
and start by considering the case of F-relaxation. By eliminating the intermediate

F-point values in (2.5), we see that v
[f ]
(k+1)m−1 can be expressed in terms of v

[c]
km and
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the forcing,

v
[f ]
(k+1)m−1 = Φm−1v

[c]
km + g̃(k+1)m−1,

g̃(k+1)m−1 = g(k+1)m−1 + Φg(k+1)m−2 + . . .+ Φm−2gkm+1.
(2.10)

The formula for the residual at the C-points (2.7) can therefore be written

r
[c]
km = gkm − v

[c]
km + Φv

[f ]
km−1 = g̃km − v

[c]
km + Φmv

[c]
(k−1)m,

where g̃km is defined by (2.3). Since the exact solution satisfies ukm = Φmu(k−1)m +
g̃km, the residual at the C-points can be expressed in terms of the error at the C-
points,

(2.11) r
[c]
0 = e

[c]
0 , r

[c]
km = e

[c]
km − Φme

[c]
(k−1)m, k = 1, 2, . . . , NT .

The coarse grid correction problem (2.8) is solved by forward substitution,

(2.12) c
[c]
km = Φk∆r

[c]
0 + Φk−1

∆ r[c]
m + . . .+ Φ∆r

[c]
(k−1)m + r

[c]
km, k = 1, 2, . . . , NT .

We can use (2.11) to express the residuals in terms of the errors. We have c
[c]
0 = e

[c]
0

and

(2.13) c
[c]
km = Φk−1

∆ (Φ∆ − Φm) e
[c]
0 + . . .+ (Φ∆ − Φm) e

[c]
(k−1)m + e

[c]
km,

for k = 1, 2, . . . , NT . The coarse grid correction (2.9) is used to update the approx-
imate solution. Let the approximate solution after the correction be ṽj = uj − fj ,
where fj is the error. After the correction, the error at the C-points satisfies

f
[c]
j = e

[c]
j − c

[c]
j .

By inserting (2.13),

f
[c]
km = Φk−1

∆ (Φm − Φ∆) e
[c]
0 + Φk−2

∆ (Φm − Φ∆) e[c]
m + . . . + (Φm − Φ∆) e

[c]
(k−1)m,

for k = 1, 2, . . . , NT . We summarize the error propagation results in the following
lemma.

Lemma 2.1. Let uj be the solution of (2.1) and let vj = uj − ej be an approx-
imation of the solution, where ej is the error. After one iteration of MGRIT with
F-relaxation, the approximate solution satisfies ṽj = uj − fj, where the error at the
C-points satisfies

f
[c]
0 = 0,(2.14)

f
[c]
km =

k−1∑
q=0

Φk−1−q
∆ (Φm − Φ∆) e[c]

qm, k = 1, 2, . . . , NT .(2.15)

With FCF-relaxation, the approximate solution after F-relaxation is further mod-
ified by a C-relaxation and a second F-relaxation, as illustrated by Figure 2.2. As
before, let vj hold the result of the initial F-relaxation, governed by (2.10), and let
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wj be the approximate solution after the C-relaxation, which is governed by (2.6). It
satisfies

(2.16) w
[c]
0 = g0, w

[c]
km = Φmv

[c]
(k−1)m + g̃km, for k = 1, . . . , NT .

After the second F-relaxation, (2.10) gives

w
[f ]
m−1 = Φm−1g0 + g̃m−1,

w
[f ]
(k+1)m−1 = Φm−1w

[c]
km + g̃(k+1)m−1 = Φ2m−1v

[c]
(k−1)m + Φm−1g̃km + g̃(k+1)m−1,

for k = 1, 2, . . . , NT − 1. The residual on the coarse grid now becomes

r
[c]
km = gkm −w

[c]
km + Φw

[f ]
km−1.

Using the same approach as for F-relaxation, the residual is first expressed in terms
of the error, followed by solving the correction equation by forward substitution. The
correction is added to the C-point values of the FCF-relaxed solution, giving the

approximate solution ṽ
[c]
km = w

[c]
km + c

[c]
km, with error f

[c]
km = u

[c]
km− ṽ

[c]
km. Because w

[c]
km

satisfies (2.16),

f
[c]
0 = 0, f

[c]
km = Φme

[c]
(k−1)m − c

[c]
km, k = 1, 2, . . . , NT .

The error propagation formula with FCF-relaxation is obtained by substituting the
solution of the correction equation into the above expression, as stated in the following
lemma.

Lemma 2.2. Let uj be the solution of (2.1) and let vj = uj − ej be an approx-
imation of the solution, where ej is the error. After one iteration of MGRIT with
FCF-relaxation, the approximate solution satisfies ṽj = uj − fj, where the error at
the C-points satisfies

f
[c]
0 = 0,(2.17)

f [c]
m = 0,(2.18)

f
[c]
km =

k−2∑
q=0

Φk−2−q
∆ (Φm − Φ∆)Φme[c]

qm, k = 2, 3, . . . , NT .(2.19)

2.2. Error propagation from a reduction point-of-view. We now derive
Lemmas 2.1 and 2.2 from a matrix reduction (Schur complement) point-of-view. This
alternate derivation shows the relationship of MGRIT with multigrid reduction and
also standard error analyses of iterative methods.

The solution to (2.1) may also be written as the solution to the block (Nt + 1)×
(Nt + 1) system

(2.20) Au =


I

−Φ I

. . .
. . .

−Φ I




u0

u1

...

uNt

 =


g0

g1

...

gNt

 = g.
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Sequential time stepping solves (2.20) with a forward solve, which is O(Nt), but also
sequential. MGRIT, instead, achieves parallelism in time by iteratively solving (2.20)
through multigrid reduction (MGR) [23] applied to the time dimension.

We start by reordering, with the F-block-rows first followed by the C-block-rows,[
Aff Afc

Acf Acc

][
uf

uc

]
=

[
gf

gc

]
.

In this ordering, we can consider the simple Schur-complement decomposition

A =

[
If 0

AcfA
−1
ff Ic

][
Aff 0

0 Acc −AcfA−1
ffAfc

][
If A−1

ffAfc

0 Ic

]
.

This decomposition naturally implies operators R and P , known as ideal restriction
and interpolation, and S,

(2.21) R =
[
−AcfA−1

ff Ic

]
, P =

[
−A−1

ffAfc

Ic

]
, S =

[
If

0

]
.

Noting that STAS = Aff and RAP = Acc −AcfA−1
ffAfc, we have

A−1 = P (RAP )−1R+ S(STAS)−1ST .

This gives the error propagator for the exact iterative method

(2.22) 0 = I −A−1A = (I − P (RAP )−1RA)(I − S(STAS)−1STA),

which is equivalent to the above formula for A−1 because RAS = 0. The first term
corresponds to the error propagator for coarse grid correction using the ideal Petrov-
Galerkin coarse grid operator, RAP = A∆, and the second term, to the error propa-
gator for F-relaxation. F-relaxation corresponds to setting the residual equal to zero
at all F-points, i.e., (STAS)−1 = A−1

ff . FCF-relaxation can be similarly defined as

(2.23) P (I −A−1
cc (Acc −AcfA−1

ffAfc))RI = P (I −A∆)RI ,

which is Jacobi-relaxation on the coarse-grid with the ideal coarse-grid operator. 1

Here RI = [0, Ic]
T is the simple injection operator.

To produce an iterative multigrid reduction method we approximate the ideal
coarse-grid operator RAP . It is ideal because the method is exact and inverting
RAP is as expensive as inverting A. To make a useful method, we introduce a
cheaper approximation B∆ ≈ A∆. Making this substitution in (2.22), the two grid
error propagator for F-relaxation is

(2.24) (I − PB−1
∆ RA)(I − S(STAS)−1STA) = P (I −B−1

∆ A∆)RI .

Equivalence in (2.24) holds because PRI is equivalent to F-relaxation, i.e., P inverts
the ff -block. See also equation (2.27) for a representation of P as an application of
F-relaxation.

1This representation can be easily verified because FC-relaxation propagates each value at a
C-point to the next adjacent C-point, i.e., it is propagation with Φm. See equation (2.26) and [6].
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Adding the effects of FCF-relaxation from (2.23), yields the two grid error prop-
agation operator

(2.25) (I − PB−1
∆ RA)(P (I −A∆)RI) = P (I −B−1

∆ A∆)(I −A∆)RI .

While the above is abstract, let us now revert back to the original unknown
ordering of (2.20) and consider the illuminating structure of R, P , A∆ and B∆,

(2.26) A∆ =


I

−Φm I

. . .
. . .

−Φm I

 , B∆ =


I

−Φ∆ I

. . .
. . .

−Φ∆ I

 ,

where the coarse-grid time stepper Φ∆ is used to approximate m steps of the fine-grid
time stepper. 2 Also, inverting A∆ provides the exact solution at C-points, i.e., it
simply applies Φ m-times. Lastly, we have

R =


I

Φm−1 . . .Φ I

. . .

Φm−1 . . .Φ I

 , P = I ⊗


I

Φ
...

Φm−1

(2.27)

where R is an F-relaxation, followed by injection from C-points to the coarse-grid, and
P injects from the coarse-grid to C-points, followed by an F-relaxation to yield values
for F-points. If the coarse-grid solution is exact, then one application of P yields the
exact solution on the fine-grid, i.e., P leaves the residual zero at all F-points.

To derive Lemmas 2.1 and 2.2, we apply the original unknown ordering of (2.20)
to the two-grid error propagators (2.24) and (2.25). Since we are in a reduction
framework with ideal interpolation that leaves zero residuals at F-points, the error
can be analyzed only with the coarse-grid. The error propagators for F- and FCF-
relaxation are then

with F-relaxation: EF∆ = I −B−1
∆ A∆,

and with FCF-relaxation: EFCF∆ = (I −B−1
∆ A∆)(I −A∆).

The blocks of B−1
∆ are

(
B−1

∆

)
ij

=

{
0 i < j

Φi−j∆ i ≥ j, i, j = 0, . . . , NT .

In the following we dispense with the ec notation, which was only used in this sub-
section to make our presentation consistent with other reduction-based methods. In-
stead, let an overbar denote a space-time vector containing a grid function at every
point in space and at every C-point in time For example, the space-time error is
represented by the vector e = [eT0 , e

T
m, e

T
2m, . . . , e

T
NTm

]T . This vector is blocked and
ek = ekm refers to the error at every point in space at the kth C-point in time.

2Note that RIAP = RAP = A∆, hence we use RI in the algorithm for computational savings.
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The definition of B−1
∆ yields the vector blocks of the product EF∆e as

(2.28) (EF∆e)k =

{
0, k = 0,∑k−1
q=0 Φk−1−q

∆ (Φm − Φ∆)eq, k = 1, 2, . . . , NT ,

which agrees with Lemma 2.1. Lemma 2.2 can be similarly derived.

2.3. Convergence estimates for MGRIT. In the following we assume that
Φ and Φ∆ can be diagonalized by the same unitary transformation,

Φ̂ = X∗ΦX = diag(λ1, λ2, . . . , λNx
),(2.29)

Φ̂∆ = X∗Φ∆X = diag(µ1, µ2, . . . , µNx
),(2.30)

where

(2.31) X = (x1,x2, . . . ,xNx) , X∗X = I.

To analyze the convergence properties of MGRIT, we make an eigenvector expan-
sion of the error before and after an MGRIT iteration,

(2.32) ej =

Nx∑
ω=1

êj,ωxω, fj =

Nx∑
ω=1

f̂j,ωxω.

We introduce the notation

êω =


ê0,ω

êm,ω
...

êmNT ,ω

 =


x∗ωe0

x∗ωem
...

x∗ωemNT

 , ω = 1, 2, . . . , Nx,

and similarly for f̂ω. Note that the first index on ê corresponds to the time point,
while the second index corresponds to the eigenmode. Using this notation and that
XX∗ = I, F-relaxation from Lemma 2.1 leads to the error propagation relation

f̂0,ω = 0,

f̂km,ω =

k−1∑
q=0

µk−1−q
ω (λmω − µω) êqm,ω, k = 1, 2, . . . , NT ,

(2.33)

for ω = 1, 2, . . . , Nx. This relation can be written in matrix form as

(2.34) f̂ω = EFω êω, where EFω = (λmω − µω)



0

1 0

µω 1 0
...

. . .
. . .

. . .

µNT−1
ω · · · µω 1 0


.

11



This matrix represents the action of EF∆ on one term in the series (2.32), corresponding
to the error propagation of eigenmode ω. For FCF-relaxation, the corresponding
matrix follows from Lemma 2.2,

(2.35) EFCFω = (λmω − µω)λmω



0

0 0

1 0 0

µω 1 0 0
...

. . .
. . .

. . .
. . .

µNT−2
ω · · · µω 1 0 0


.

It is straightforward to estimate matrix norms of EFω and EFCFω . Assuming that
both Φ and Φ∆ are stable time-stepping operators, i.e., |λω| < 1 and |µω| < 1,

(2.36) ‖EFω ‖1 = ‖EFω ‖∞ = |λmω − µω|
NT−1∑
j=0

|µω|j = |λmω − µω|
(1− |µω|NT )

(1− |µω|)
,

and

(2.37) ‖EFCFω ‖1 = ‖EFCFω ‖∞ = |λmω − µω|
(1− |µω|NT−1)

(1− |µω|)
|λω|m.

Both error propagation matrices satisfy

(2.38) ‖Eω‖2 ≤
√
‖Eω‖1 ‖Eω‖∞ = ‖Eω‖1 = ‖Eω‖∞.

We can now show the following.
Theorem 2.3. Let Φ and Φ∆ be simultaneously diagonalizable by a unitary

transformation X, with eigenvalues λω and µω, respectively. Furthermore, assume
that both time-stepping operators are stable, i.e., |λω| < 1 and |µω| < 1. Then the
global space-time error vector at the C-points e = [eT0 , e

T
m, e

T
2m, . . . , e

T
NTm

]T satisfies

‖EF∆e‖2 ≤ max
ω

{
|λmω − µω|

1− |µω|NT

1− |µω|

}
‖e‖2, for F-relaxation,

and

‖EFCF∆ e‖2 ≤ max
ω

{
|λmω − µω|

1− |µω|NT−1

1− |µω|
|λω|m

}
‖e‖2, for FCF-relaxation.

Proof. First, we use the orthonormality of the eigenvectors xω to obtain the
general relationship for any space-time vector z

(2.39) ‖z‖22 =

NT∑
k=0

‖zk‖22 =

NT∑
k=0

Nx∑
ω=1

|ẑkm,ω|2 =

Nx∑
ω=1

‖ẑω‖2.

By using (2.39), followed by (2.34) and (2.39) again, the bound for F-relaxation can
be derived as

‖EF∆e‖22 =

NT∑
k=0

‖fk‖22 =

Nx∑
ω=1

‖f̂ω‖22 =

Nx∑
ω=1

‖EFω êω‖22(2.40a)

≤
(

max
ω
‖EFω ‖22

) Nx∑
ω=1

‖êω‖22 =
(

max
ω
‖EFω ‖2

)2

‖e‖22.(2.40b)
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Finally, (2.38) and (2.36) leads to the desired results. The bound for FCF-relaxation
is analogously derived.

Remark 2.1. Theorem 2.3 implies that we can estimate the error reduction
factor independently for each eigenmode, and allows us to simplify the convergence
analysis by only examining ‖Eω‖ for the worst-case eigenmode.

Remark 2.2. Note that the limit |µω| → 1 is a removable singularity in the above
estimates because if |µω| = 1− ε and 0 < ε� 1, then 1− |µω|NT = Ntε+O(ε2) and
1− |µω| = ε. Thus, (1− |µω|NT )/(1− |µω|)→ NT as ε→ 0+. In many applications
the convergence estimate can be bounded independently of NT because of the factor
|λω − µmω | in the nominator, e.g. see Remark 2.5 below.

Remark 2.3. In our convergence estimates the nominator term 1 − |µω|NT in
Theorem 2.3 is usually replaced by unity. However, it is worth noting that the estimate
holds for any value of NT . This implies that the error at later time values is larger
than the error at earlier time values, especially for modes with |µω| ≈ 1. Additionally,
MGRIT can be expected to converge faster for small numbers of time steps.

Remark 2.4. As we will illustrate later for parabolic and mixed hyperbolic-
parabolic model problems, the factor |λω|m in the estimate for FCF-relaxation leads
to significantly faster convergence compared to F-relaxation, because |λω| � 1 for
eigenmodes that are highly oscillatory in space. The FCF-relaxation was shown in [6]
to be critical for scalable multi-level iterations.

2.4. Systems of ODEs. The assumption that Φ and Φ∆ can be diagonalized
by the same transformation holds true, for example, when MGRIT is applied to solve
a linear system of ODEs.

dq

dt
= Gq + h(t), 0 ≤ t ≤ T,

q(0) = g0,
(2.41)

and the linear operator G can be diagonalized by X,

(2.42) X∗GX = diag(γ1, γ2, . . . , γNx
).

We get a problem on the form (2.1) if we discretize (2.41) by a single step method
and take uj ≈ q(tj). By assuming a constant time step, tj = jδt, j = 0, 1, . . . , Nt,
where δtNt = T , we can handle any single step time-stepping schemes where Φ can
be written as a rational function of δtG,

(2.43) Φ =

(
I +

∑
ν

βν(δtG)ν

)−1(
I +

∑
ν

αν(δtG)ν

)
.

The operator Φ∆ can be diagonalized by the same transformation as Φ, for example,
when it is a rediscretization of (2.41) using the time step ∆t = mδt, and optionally a
different time discretization scheme,

(2.44) Φ∆ =

(
I +

∑
ν

β′ν(∆tG)ν

)−1(
I +

∑
ν

α′ν(∆tG)ν

)
.

The eigenvalues of G are related to those of Φ and Φ∆ according to

(2.45) λω =
1 +

∑
ν αν(δtγω)ν

1 +
∑
ν βν(δtγω)ν

, µω =
1 +

∑
ν α
′
ν(∆tγω)ν

1 +
∑
ν β
′
ν(∆tγω)ν

, ω = 1, 2, . . . , Nx.
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It is worth exploring the upper bound in the estimates of Theorem 2.3 in certain
model situations. For example, if we fix the final time and increase the temporal
resolution, the time step goes to zero, δt → 0, leading to |µω| → 1. More importantly
in this case, we also have |λω| → 1. Therefore, in the small time-step limit, the
convergence of MGRIT is determined by the ratio |λmω −µω|/(1−|µω|) from Theorem
2.3. In many cases this can be less than 1 (and independent of NT ), see e.g. Remark
2.5.

2.4.1. The influence of a mass matrix. So far, we have considered classical
discretizations that do not include a mass matrix in the time stepping routine. How-
ever, we can generalize the analysis slightly and move to the case of simultaneously
diagonalizable Φ and Φ∆, without the restriction of a unitary transformation. Let

Φ̂ = X−1ΦX = diag(λ1, λ2, . . . , λNx
),(2.46a)

Φ̂∆ = X−1Φ∆X = diag(µ1, µ2, . . . , µNx
).(2.46b)

The difference now is that instead of (2.39), we have for any vector z

(2.47) ‖zi‖2M = z∗iMzi = ‖X−1zi‖22 =
∑
ω

|ẑi,ω|2, with M = (XX∗)−1.

The norm has changed. Introducing the NT × NT block diagonal matrix M with
diagonal blocks M, we can write the F-relaxation estimate as

‖EF∆e‖M ≤
(

max
ω
‖EFω ‖2

)
‖e‖M = max

ω

{
|λmω − µω|

1− |µω|NT

1− |µω|

}
‖e‖M.(2.48)

The FCF-relaxation estimate is analogous.

An example of the above case occurs when (2.41) is written in the form

M
dq

dt
= −Sq + h(t), 0 ≤ t ≤ T,

corresponding to G = −M−1S . Here M = MT > 0 is the mass matrix and S =
ST > 0 is the stiffness matrix. Noting that the matrix

M
1
2GM−

1
2 = M−

1
2SM−

1
2

is similar to G and symmetric, we can write its eigenvalue decomposition as(
M

1
2GM−

1
2

)
U = UΓ, Γ = diag(γ1, γ2, . . . , γNx), UUT = I.

Now it is easy to see that the matrix V = M−
1
2U , is an eigenvector matrix for G and

M = (V V ∗)−1 =
(
M−

1
2UUTM−

1
2

)−1

= M.

As is often the case, the norm of M is close to 1, so we expect convergence here to be
very similar to the unitarily diagonalizable case discussed above.
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2.5. Implicit Runge-Kutta methods. To predict how fast MGRIT will con-
verge when it is applied to solve a system of ODEs of the form (2.41), it is important
to consider how the spectrum of the operator G is related to the spectra of Φ and Φ∆,
i.e., how the eigenvalues γω are related to (λω, µω). This relation is determined by
the fine and coarse time-stepping methods, through the coarsening factor m = ∆t/δt
as well as the coefficients αν , βν , α′ν , and β′ν in (2.45). Theorem 2.3 proves that the
convergence of MGRIT is governed by the pair of eigenvalues (λω, µω) that results in
the largest value of ‖Eω‖∞. This quantity can be estimated by (2.36) and (2.37) for
F- and FCF-relaxation, respectively. Assuming that the same time-stepping method
is used for both the fine and the coarse grid, the convergence of MGRIT is therefore
determined by the coarsening factor m and the spectrum of the operator G in (2.41).

Most spatial discretizations of parabolic PDEs result in an operator G where
the eigenvalues are real and non-positive, Im{γω} = 0, −γmax ≤ Re{γω} ≤ 0 and
γmax = max |γω|. As the spatial grid is refined, the eigenvalue with largest magnitude
grows as γmax = O(1/h2), where h represents the smallest spatial grid or element
size. For a non-dissipative spatial discretization of a hyperbolic PDE, the eigenvalues
are often purely imaginary and come in complex conjugated pairs, Re{γω} = 0 and
−γmax ≤ Im{γω} ≤ γmax. In this case, the eigenvalue with largest magnitude grows as
γmax = O(1/h) when the spatial grid is refined. For a dissipative spatial discretization
of a hyperbolic PDE, the eigenvalues also come in complex conjugated pairs. Here the
imaginary part of the spectrum behaves as in the non-dissipative case, but the real
part is non-positive, Re{γω} ≤ 0. Some examples of the spectrum of one-dimensional
finite difference discretizations of hyperbolic and parabolic PDEs are given in Sup-
plemental Materials Section A. Explorations of these basic problem types, hyperbolic
and parabolic, will be explored in the upcoming figures by examining the imaginary
and real axes, respectively.

When the system of ODEs is stiff, for example when it corresponds to a spatial
discretization of a parabolic partial differential equation, the eigenvalues of G are real
and non-positive. Furthermore, the most negative eigenvalue tends to −∞ as the
spatial grid size tends to zero. This means that

lim
γ→−∞

(λ, µ) = (0, 0), for all L-stable time-stepping methods.

In this limit, the estimates (2.36) and (2.37) show that the error after one iteration
of MGRIT is zero, because the term |λm − µ| = 0 for both F- and FCF-relaxation.
Motivated by this result, we proceed by evaluating the convergence estimate for three
L-stable singly diagonally implicit Runge-Kutta (SDIRK) methods of accuracy order
1-3. The Butcher tableaux for these methods are given in Table 2.1. Note that the
SDIRK-1 method is the same as the backward Euler method.

In Figure 2.3 we illustrate the convergence estimate for MGRIT for SDIRK meth-
ods of orders 1-3. In particular, we show contour level plots of ‖Eω‖ as function of
the real and imaginary parts of δtγ. The contours are oriented with the regions of
convergence and instability as depicted in Figure 2.3b. Note that the convergence
factor is smaller for the third order than the second order SDIRK method, regardless
the relaxation type. For all orders, ‖Eω‖ is smaller with FCF-relaxation.

The second order accurate Crank-Nicolson method is often used for parabolic
problems as it is unconditionally stable and only involves one stage per time step. It
is an A-stable method, but it is not L-stable. However, the corresponding domain of
convergence for MGRIT resembles the stability region of an explicit time-integration
method, see Figure 2.4. This illustrates that the unconditional stability property of

15



1 1

1

(a) SDIRK-1

1− α 1− α
α 2α− 1 1− α

1/2 1/2

(b) SDIRK-2, α = 1/
√

2

a a

c c− a a

1 b 1− a− b a

b 1− a− b a

(c) SDIRK-3, a = 0.435866 . . .,
b = 1.208496 . . ., c = 0.717933 . . .

Table 2.1: Butcher tableaux for L-stable SDIRK methods of accuracy order 1-3.

the underlying time-integration method can be lost when it is combined with MGRIT.
For parabolic problems, we hypothesize that only L-stable methods correspond to an
unbounded domain of convergence for MGRIT.

The coarsening factor, m = ∆t/δt, has a significant influence over the convergence
properties of MGRIT. In Figure 2.5 we present ‖Eω‖ for the SDIRK-3 method and
coarsening factors m = 4, m = 8, and m = 16. Note how the contour levels cluster
near the boundary of the stability region for Φ as m becomes larger, implying that
MGRIT converges extremely well throughout almost all of the stability region of the
SDIRK-3 method. The only remaining region of slow convergence occurs near the
imaginary axis, which will be studied in more detail below.

2.5.1. Convergence along the real and imaginary axes. In Figure 2.6 (top)
we plot the convergence estimate for MGRIT and SDIRK methods of orders 1-3 when
the spatial eigenvalue, γω, is real and negative. The real case includes any spatial
discretization that yields a symmetric positive definite matrix. We explore m = 2 and
m = 32 and F- versus FCF-relaxation. The global convergence bound is the maximum
value attained by a dataset and in all cases, this bound is uniformly below 1. The
benefits of FCF-relaxation also increase with the SDIRK order. For SDIRK-3 and
FCF-relaxation, the convergence bound is ≈ 0.005. Lastly, the results are insensitive
to the coarsening factor m. Overall, the method performs very well for this case.

Remark 2.5. While we primarily use plots to illustrate convergence bounds be-
cause they convey more information, such as how each mode number responds to the
algorithm, one can also derive a general convergence bound in many cases. For in-
stance, let m = 2, γω be real with γω < 0, and the backward Euler method be used on
both levels, then the eigenvalues of Φ and Φ∆ are a special case of (2.45)

λω = (1− δtγω)−1, µω = (1− 2δtγω)−1.

In this case there is no restriction on δt and κ := −δtγω ∈ [0,∞). Using (2.36), the
estimate for ‖EFω ‖2 is

‖EFω ‖2 ≤ |(1 + κ)−2 − (1 + 2κ)−1|1− (1 + 2κ)−NT

1− (1 + 2κ)−1
≤ |(1 + κ)−2(1 + 2κ)− 1| 1

2κ

=
κ

2(κ+ 1)2
≤ 1

8
.

Thus, the MGRIT iteration is always convergent, with a rate bounded by 0.125. For
FCF-relaxation, we can likewise show

‖EFCFω ‖2 ≤
κ

2(κ+ 1)4
≤ 27

512
= 0.0527 . . .
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(c) SDIRK-2 with F-relaxation
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(d) SDIRK-2 with FCF-relaxation
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(e) SDIRK-3 with F-relaxation

−10 −5 0
−4

−2

0

2

4

Re(δtγ)

Im
(δ

t
γ
)

(f) SDIRK-3 with FCF-relaxation

Fig. 2.3: ‖Eω‖ as function of the real and imaginary parts of δtγ for SDIRK methods
with coarsening factor m = 2. The solid lines show levels 0.125 (blue), 0.25 (gray), 0.5
(yellow), 0.75 (orange), and 1.0 (red). The dashed black and light blue lines indicate
the stability boundaries |λ| = 1 and |µ| = 1, respectively.

Note that these convergence bounds apply to any SPD spatial discretization.

In Figure 2.6 (bottom) we plot the convergence estimate for MGRIT for SDIRK
methods of orders 1-3, when γω is purely imaginary. In this case, the sign of the
imaginary part does not influence ‖Eω‖, thus we consider only the magnitude of γω.
The convergence estimate is bounded uniformly below 1 only for SDIRK-1 and m = 2,

17



−10 −5 0
−4

−2

0

2

4

Re(δtγ)

Im
(δ

t
γ
)

(a) Crank-Nicolson with F-relaxation

−10 −5 0
−4

−2

0

2

4

Re(δtγ)

Im
(δ

t
γ
)

(b) Crank-Nicolson with FCF-relaxation

Fig. 2.4: ‖Eω‖ as function of the real and imaginary parts of δtγ for the second
order Crank-Nicolson method with coarsening factor m = 2. The contour levels are
the same as in Figure 2.3. The Crank-Nicolson method is stable for Re(δtγ) ≤ 0,
bounded by the dashed light blue line.
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(a) SDIRK-3, F-relaxation, m = 4
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(c) SDIRK-3, F-relaxation, m = 16
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(d) SDIRK-3, FCF-relaxation, m = 16

Fig. 2.5: ‖Eω‖ as function of the real and imaginary parts of δtγ for the SDIRK-3
method with different coarsening factors. See Figure 2.3, sub-figures (e) and (f), for
the m = 2 case. The contour levels are the same as in Figure 2.3.

18



10−4 10−3 10−2 10−1 100 101 102

Scaled magnitude of negative real spatial eigenvalue δt|γω|
10−3

10−2

10−1

0.5

100

101

‖E
ω
‖B

ou
n

d

F, SDIRK-1

F, SDIRK-2

F, SDIRK-3

FCF, SDIRK-1

FCF, SDIRK-2

FCF, SDIRK-3

(a) m = 2, real axis

10−4 10−3 10−2 10−1 100 101 102

Scaled magnitude of negative real spatial eigenvalue δt|γω|
10−3

10−2

10−1

0.5

100

101

‖E
ω
‖B

ou
n

d

(b) m = 32, real axis
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(c) m = 2, imaginary axis
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Fig. 2.6: ‖Eω‖ as function of the magnitude of the scaled spatial eigenvalue δt|γω|, for
the SDIRK 1-3 methods, considering m = 2 and m = 32, for F- and FCF-relaxation.

where the bound is 0.5. For all other cases, the convergence bound eventually goes
above 1 as the scaled spatial eigenvalue δtγω increases. For small enough δt, MGRIT
can be made to converge for SDIRK-2 and SDIRK-3, but if γω = O(1/h), this leads
to an explicit time-stepping limit δt/h ≤ C, which is a significant restriction.

3. Numerical results. We focus on systems of ODEs that arise from a method
of lines discretization of a linear PDE. We will compare the convergence factor of
running MGRIT with the bounds from Theorem 2.3. Since the fine-grid residual in
MGRIT satisfies

‖r‖2 = ‖APe‖2 = ‖A∆e‖2 ,

the reported convergence factor (the ratio of two consecutive fine-grid residuals) is

‖rn+1‖2
‖rn‖2

=
‖A∆en+1‖2
‖A∆en‖2

≤ ‖A∆E∆A
−1
∆ ‖2 = ‖E∆‖2 .

The A∆ and A−1
∆ cancel because Φ and Φ∆ commute (due to the fact that X is

unitary 3). Thus asymptotically, the estimates from Theorem 2.3 should be (close)
upper bounds to the observed convergence factors in MGRIT.

3This also holds true for the more general case when Φ and Φ∆ are simultaneously diagonalizable
by the same transformation.
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Unless otherwise mentioned, we use a halting tolerance of 10−9. The multi-level
results use either stand-alone V-cycles or F-cycles, see [3]. The initial guess for the
solver at all time points for t > 0 is uniformly random. The experimentally measured
asymptotic convergence rate is taken to be the average convergence rate over the
last five iterations. Overall, our experiments compare various coarsening factors, F-
relaxation (i.e., parareal) versus FCF-relaxation and two-level versus multi-level.

3.1. Parabolic problems. We now consider the model heat equation

ut −∇ · ∇u = f(x, t), (x, t) ∈ Ω× (0, T ),(3.1a)

u(x, 0) = u0(x), x ∈ Ω.(3.1b)

where Ω is some bounded convex domain in 1, 2 or 3 dimensions, and the boundary
conditions are Dirichlet or Neumann in space. Standard discretizations of (3.1) lead
to a system of ODEs of the form (2.41) where the linear operator G is symmetric with
real and non-positive eigenvalues {γω}, γω ≤ 0.

3.1.1. Heat equation with classic finite-differencing and backward Eu-
ler. We start by considering the heat equation (3.1) in 1D. We use standard second-
order centered finite-differencing given by (A.17) with homogeneous Dirichlet bound-
ary conditions, and discretize time by the backward Euler method. The space-time
domain is a regular grid of x ∈ [0, 1] and t ∈ [0, 0.625], with the compatible initial
condition of half a sine-wave, u(x, 0) = sin(πx). We take the ratio δt/h

2 = 10.0.
Table 3.1 presents our numerical results. Overall, comparing the observed conver-

gence factors with the theoretical estimates, we see that they are very close, confirming
the accuracy and generality of our analysis. FCF-relaxation offers benefits over F-
relaxation such as: insensitivity to the coarsening factor m, multi-level convergence
that is essentially as good as two-level, a two-level analysis predictive of multi-level,
and overall superior convergence rates.

Regarding F-relaxation asm increases, the two-level results deteriorate, but multi-
level results improve. This stems from the fact that for large coarsening factors the
difference between multi-level and two-level decreases, i.e., there are fewer levels.
Lastly, the convergence rate for the multi-level method combined with F-relaxation
always increases (i.e., is non-optimal) when the mesh is refined, but for large coars-
ening factors this growth is very slow.

Compared to the previously published convergence bound of 0.298 for two-level
MGRIT with F-relaxation (c.f. Table 5.1 in [11]), we see that their estimate is only
sharp for large coarsening factors. For small coarsening factors, it is overly pessimistic.
Here, the new bound from Remark 2.5 is sharper, i.e., our bound is 0.125 for F-
relaxation with m = 2 and the observed convergence rate is 0.111.

For the corresponding problem in 2D, we find that the one-dimensional results
(theoretical and experimental) carry over, including Remark 2.5. See the Supplemen-
tal Materials Table B.1.

3.1.2. Heat equation with finite elements and SDIRK time-steppers. In
this section we demonstrate the generality of our convergence theory by considering
the setting of 3D finite element problems posed on unstructured grids for various
orders. These simulations use the modular finite element library MFEM [19]. We
consider the heat equation (3.1) with the Neumann boundary condition,

n · ∇u = g(x, t), (x, t) ∈ ∂Ω× (0, T ).
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m / Size 26 × 28 27 × 210 28 × 212 29 × 214 210 × 216

2 0.118 0.118 0.117 0.113 0.111

Two-level
4 0.195 0.197 0.197 0.196 0.194

8 0.232 0.238 0.241 0.241 0.240

F-relaxation
32 0.065 0.267 0.273 0.278 0.278

2 0.292 0.468 0.527 0.560 0.573

V-cycles
4 0.249 0.327 0.380 0.398 0.405

8 0.231 0.253 0.304 0.309 0.316

32 0.064 0.266 0.273 0.278 0.282

2 0.045 0.046 0.045 0.044 0.042

Two-level
4 0.076 0.076 0.075 0.075 0.074

8 0.061 0.084 0.090 0.089 0.089

FCF-relaxation
32 0.019 0.053 0.095 0.101 0.100

2 0.084 0.106 0.116 0.121 0.123

V-cycles
4 0.078 0.096 0.100 0.102 0.103

8 0.061 0.086 0.090 0.090 0.090

32 0.019 0.053 0.095 0.100 0.100

Table 3.1: One-dimensional heat equation, asymptotic convergence rates for MGRIT
with F-relaxation and then with FCF-relaxation.

We take the computational domain Ω to be defined by the mesh pipe-nurbs.mesh

from MFEM’s data directory, see Figure B.1 in Supplemental Materials. We set the
final time to T = 1, and use the manufactured solution:

u(x, t) = sin(κx1) sin(κx2) sin(κx3) sin(τt), x = (x1, x2, x3),

with κ = 0.314 and τ = 2π + π/6. In space, we apply a standard Galerkin finite
element discretization using continuous Qk elements, k = 1, 2, i.e. tri-linear and
tri-quadratic polynomials on each element. For the time discretization, we use the
SDIRK-2 and SDIRK-3 methods described above with Q1 and Q2 spaces, respectively,
in order to match the spatial and temporal discretization orders. In this setting, the
matrix G = −M−1S, where M is the mass matrix and S is the diffusion matrix. It
is well known, that the eigenvalues of G are real and non-positive; the smallest and
largest (by magnitude) eigenvalues are of orders O(1) and O(h−2), respectively. The
MGRIT convergence estimates for this case are shown in Figure 2.6 (top).

The results from the numerical experiments using Q2 elements and SDIRK-3 are
presented in Table 3.2, where the space-time resolutions are given in the form “number
of mesh elements” × “number of time steps”. See the Supplemental Materials Table
B.2 for results with Q1 elements and SDIRK-2. Overall, the accuracy and generality
of our analysis is again confirmed. The benefits of FCF-relaxation over F-relaxation
are similar to those already discussed in Section 3.1.1, except that the convergence
rate is now vastly improved for FCF-relaxation.
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m / Size 26 × 210 29 × 211 212 × 212 ||E∆|| ≤

2 0.001 0.007 0.028 0.160

Two-level
4 0.008 0.032 0.090 0.150

8 0.033 0.092 0.142 0.150

F-relaxation
32 0.140 0.140 0.141 0.150

2 0.201 0.214 0.216 -

V-cycles
4 0.134 0.158 0.156 -

8 0.131 0.138 0.145 -

32 0.140 0.140 0.141 -

2 0.001 0.002 0.004 0.004

Two-level
4 0.003 0.004 0.004 0.005

8 0.004 0.004 0.004 0.005

FCF-relaxation
32 0.004 0.004 0.004 0.005

2 0.002 0.003 0.004 -

V-cycles
4 0.003 0.004 0.004 -

8 0.004 0.004 0.004 -

32 0.004 0.004 0.004 -

Table 3.2: Three-dimensional heat equation with Q2 elements and SDIRK-3, asymp-
totic convergence rates for MGRIT with F-relaxation and then with FCF-relaxation.
The theoretical bound appears in the final column.

3.2. Mixed hyperbolic-parabolic problems. We now consider the model
advection-diffusion problem

ut + b(t,x) · ∇u− η∇ · ∇u = 0, (x, t) ∈ Ω× (0, T ),(3.2)

u(x, 0) = u0(x), x ∈ Ω.(3.3)

where η ≥ 0, Ω is some bounded convex domain in 1, 2 or 3 dimensions, and the
boundary conditions are either periodic or Dirichlet in space. The discretizations
considered will yield a linear operator G with either purely imaginary or complex-
valued eigenvalues {γω} with non-positive real part, complementing the study of the
purely real case above.

3.2.1. One-dimensional advection with grid-dependent dissipation. We
start by discretizing (3.2) in one space dimension where Ω = [0, 1], b(t,x) = 1,
η = 0, and let the boundary conditions be periodic. When discretizing ux, we use
centered finite-differencing with artificial (grid-dependent) dissipation on a regular
grid. This implies that the spatial eigenvalues {γω} are the Fourier symbols from
Supplemental Materials Section A and are a function of the scaled Fourier frequency
ξ = ωh ∈ [−π, π] (see equation (A.16)). We again consider the SDIRK methods from
Table 2.1.

Figure 3.1 plots ||Eω|| for FCF-relaxation, m = 2, 32 and δt/h = 1, 4. The x-axis
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is the scaled Fourier frequency ξ (i.e., spatial eigenvalue). Using the notation from
Supplemental Materials Section A, the plots on the left are for SDIRK-1 with the low-

order spatial discretization characterized by γ
{2,ε}
ω = D̂

{2,ε}
1 . The plots on the right

are for SDIRK-3 and the higher-order spatial discretization characterized by γ
{4,ε}
ω =

D̂
{4,ε}
1 . We consider the three cases ε = 0, 0.5, 4, corresponding to D

{2p,ε}
1 for p = 1, 2

(c.f. (A.5)), where the artificial dissipation term is consistent with −εh2p−1(−∆)p.

Repeating the experiment in Figure 3.1 for F-relaxation (see Supplemental Ma-
terials Figure B.2) shows a significant difference only for the case of ε = 4, where the
higher viscosity allows FCF-relaxation to accelerate the method. Overall for F- and
FCF-relaxation, the method converges with a rate at, or below 0.5, for smaller m and
δt/h ≤ 1. If m or δt/h is large, then divergence is likely. FCF-relaxation is beneficial
at higher frequencies, and this can lead to a significantly better overall bound, as in
the SDIRK-3 and ε = 4 case.

To numerically validate the lower-order case of Figure 3.1 (left-side) for m = 2,
we run MGRIT and record the asymptotic convergence rate. We take Nt = Nx,
corresponding to the final time T = δtNt = δt/h. In Table 3.3 we report the case
δt/h = 1. The initial condition is u(x, 0) = sin(2πx) on [0, 0.5] and u(x, 0) = 0 on

(0.5, 1.0]. The MGRIT halting tolerance was reduced to 10−14
√
δth

to better capture the

asymptotic behavior.

For m = 2, the results agree with the theory. The addition of dissipation (larger
ε) leads to faster convergence, while larger δt/h lead to slower convergence. See Table
B.3 in the supplemental materials section for the case δt/h = 4. For the two-level
case, FCF-relaxation is only beneficial when there is a sufficient amount of dissipation,
i.e. ε = 4.0. The chief benefit of FCF-relaxation is for the multi-level case where FCF
is required for good MGRIT performance (convergence generally at or below 0.5).
However even with FCF-relaxation, there appears to be a modest log-growth in the
iteration count.

The results for m = 32 are not presented because they generally diverged. The
chief exception was for FCF-relaxation and ε = 4.0, where as illustrated by Figure
3.1, MGRIT converged slowly with rates between 0.6 and 0.9.

3.2.2. One-dimensional advection-diffusion. We now repeat the analysis
from Section 3.2.1, but for the case of advection with physical (non grid-dependent)
diffusion. To do this, let ε = 0 and η = 1, which implies spatial eigenvalues of

{γω} = {D̂{2,ε=0}
1 + D̂

{2}
2 } for the low-order case and {γω} = {D̂{4,ε=0}

1 + D̂
{4}
2 } for

the high-order case (see Appendix A for notation). Here, the eigenvalues {γω} are
complex-valued but are dominated by their real part in the limit h→ 0.

The convergence bounds are depicted in Figure 3.2. As h decreases, the contri-

bution from the dissipative Fourier symbol D̂
{p}
2 grows (i.e., the negative real part

of {γω} grows). The convergence bound improves and approaches the diffusion-only
case. For m = 2 diffusion-only like behavior is quickly attained, however the grids
considered for m = 32 are not large enough to show such asymptotic behavior.

FCF-relaxation offers similar benefits to that seen for the heat equation. Re-
garding other parameters, increasing δt/h will worsen the MGRIT convergence, while
decreasing δt/h will improve it. Increasing η will also improve the convergence.

Table 3.4 validates numerically the lower-order plots (left-side) of Figure 3.2,
analogously to Section 3.2.1. For m = 2, the results match well the one-dimensional
heat equation results from Table 3.1, while for m = 32, the grid-sizes are not quite
large enough to show asymptotic behavior similar to the heat equation.
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(c) SDIRK-1, low-order γ2,ε
ω , ε = 0.5
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(d) SDIRK-3, high-order γ4,ε
ω , ε = 0.5
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FCF, m=2, δt/h=1
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FCF, m=32, δt/h=1

FCF, m=32, δt/h=4

(e) SDIRK-1, low-order γ2,ε
ω , ε = 4
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(f) SDIRK-3, high-order γ4,ε
ω , ε = 4

Fig. 3.1: ‖EFCFω ‖ as function of the scaled Fourier frequency ξ = ωh for ξ ∈ [0, π],
m = 2, 32 and δt/h = 1, 4. Note that ‖EFCFω ‖ is a symmetric function of ξ and reflects
around the origin.

3.2.3. Advection-diffusion with finite elements and SDIRK time step-
ping. To show generality for our analysis, we now consider a 2D discontinuous
Galerkin (DG) discretization, using the MFEM library, of the advection-diffusion
problem (3.2) with periodic boundary conditions over a regular hexagonal domain
Ω, specifically, the file data/periodic-hexagon.mesh from MFEM. We set the final
time T = 10, the velocity field b = (

√
2/3,

√
1/3) and let the initial condition be a
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ε / Size 28 × 28 29 × 29 210 × 210 211 × 211

0 0.449 0.455 0.456 0.459

Two-level 0.5 0.288 0.294 0.298 0.300

F-relaxation
4.0 0.133 0.134 0.134 0.134

0 0.537 0.647 0.774 0.872

F-cycles 0.5 0.230 0.311 0.399 0.506

4.0 0.138 0.138 0.163 0.198

0 0.275 0.398 0.443 0.461

Two-level 0.5 0.213 0.264 0.288 0.297

FCF-relaxation
4.0 0.083 0.086 0.087 0.087

0 0.260 0.367 0.441 0.524

F-cycles 0.5 0.204 0.249 0.327 0.396

4.0 0.088 0.100 0.127 0.150

Table 3.3: One-dimensional advection equation with artificial dissipation, asymptotic
convergence rates for MGRIT with F-relaxation and then with FCF-relaxation; m =
2, Nt = Nx, δt/h = 1, for various ε.

δt/h m / Size 28 × 28 29 × 29 210 × 210 211 × 211

1 2 0.116 0.118 0.118 0.118

Two-level
4 2 0.111 0.120 0.118 0.119

F-relaxation
1 32 N/A N/A 0.181 0.259

4 32 N/A N/A 0.181 0.251

F-cycles
1 2 0.113 0.114 0.114 0.115

4 2 0.108 0.117 0.114 0.115

1 2 0.042 0.048 0.049 0.048

Two-level
4 2 0.042 0.051 0.043 0.049

FCF-relaxation
1 32 N/A N/A 0.057 0.091

4 32 N/A N/A 0.001 0.023

F-cycles
1 2 0.042 0.047 0.048 0.048

4 2 0.042 0.050 0.043 0.048

Table 3.4: One-dimensional advection-diffusion equation with physical diffusion co-
efficient η = 1 in (3.2), asymptotic convergence rates for MGRIT with F-relaxation
and then with FCF-relaxation, for different coarsening factors m and δt/h.
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FCF, m=2, h=0.100
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FCF, m=2, h=0.001

FCF, m=32, h=0.100
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(a) SDIRK-1, low-order γω
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(b) SDIRK-3, high-order γω

Fig. 3.2: ‖EFCFω ‖ as function of the scaled Fourier frequency ξ = ωh for ξ ∈ [0, π],
m = 2, 32, δt/h = 1 and physical diffusion η = 1, for different h values. Note that
‖EFCFω ‖ is a symmetric function of ξ and reflects around the origin.

smooth rectangular bump:

u0(x) =
1

16
erfc[w(x1 − c1 − r1)] erfc[−w(x1 − c1 + r1)]

× erfc[w(x2 − c2 − r2)] erfc[−w(x2 − c2 + r2)], x = (x1, x2),

where erfc(x) is the complementary error function, and the parameters are: (c1, c2) =
(0,−0.2), (r1, r2) = (0.45, 0.25), and w = 10. A sample mesh and initial condition are
depicted in Figure B.3 in Supplemental Materials. For the spatial discretization, we
use Q3 (bi-cubic) discontinuous elements with a standard upwind DG discretization
for the advection operator and the symmetric interior penalty method (IP or SIPG)
for the diffusion operator, when η > 0. The semi-discrete problem is:

(3.4) M u̇h = Kuh − ηSuh, η ≥ 0,

where M is the DG mass matrix, K, S are the discretizations of −v · ∇u and −∆u,
respectively, and G = M−1(K − ηS). For the temporal discretization we use the
SDIRK-3 method defined earlier. We consider three cases:

η = 0, (pure advection),(3.5a)

η = 0.1, (advection-diffusion with constant diffusion),(3.5b)

η = 0, (pure advection with artificial dissipation).(3.5c)

For the case (3.5c), the term

(3.6) − εh3SM−1S = −10−3(h/h0)3SM−1S,
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is added to the right-hand side of the ODE (3.4). The values h and h0 are the mesh
spacings for the current mesh and the smallest (coarsest) mesh, respectively. In other
words on the coarsest mesh we use 10−3 dissipation and as the mesh is refined by a
factor of 2, we decrease the dissipation by a factor of 8. This scaling of ε is chosen
to yield a dissipation similar to the one-dimensional case with high-order dissipation.
Note that the inverse M−1 is computable because it is block-diagonal with blocks
corresponding to the mesh elements.

Since some of cases (3.5a)-(3.5c) make MGRIT diverge, we cap the number of
iterations at 30, and only generate results at larger grid sizes for the cases that do
converge. If no results were generated, a ‘-’ is used. For this set of tests, the problem
size is given as “number of degrees of freedom” × “number of time steps”.

Our theory requires diagonalizability of G, which we cannot guarantee in all of
the cases. For the pure advection case (3.5a), we did numerically verify for all three
grid sizes that the eigenvalues of G are separated by a distance bounded from below
by ≈ 5 × 10−5. Thus, we only claim that our theory applies for the pure advection
case. Nonetheless we find it worthwhile to investigate if the theory also has predictive
properties for the cases (3.5b) and (3.5c) (which it does).

m / Size 3 · 28 × 210 3 · 210 × 211 3 · 212 × 212 3 · 214 × 213

2 0.069 0.098 0.127 0.154

Two-level 4 0.338 0.479 0.584 0.682

F-relaxation
8, 32 div div - -

2 10.91 20.96 41.23 85.3

F-cycles 4 4.061 7.629 9.934 12.84

8, 32 div div - -

2 0.054 0.087 0.123 0.159

Two-level 4 0.289 0.392 0.523 0.648

FCF-relaxation
8, 32 div div - -

2 1.270 2.481 4.319 6.616

F-cycles 4 1.778 2.182 4.317 5.861

8, 32 div div - -

Table 3.5: Asymptotic convergence rates for MGRIT with F-relaxation and then with
FCF-relaxation, for the case of pure advection with η = 0, Q3 elements and SDIRK-3.

The results for the pure advection case are presented in Table 3.5. Here MGRIT
only converged for the two-level method and m = 2, 4; however, the convergence rate
deteriorated as the grid was refined. MGRIT diverged (denoted by “div”) for all other
parameter combinations. We conjecture that the small numerical diffusion added by
the DG upwinding process is insufficient to make the pure advection case work well
together with MGRIT. Improving this behavior is a topic for future investigation.

To compare our experimental observations with our theory, we plot for the largest
problem size the numerically computed eigenvalues of δtG in the complex plane, using
a small circle, colored by the value of the estimating function ||Eω||. Figure 3.3 (left)
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Fig. 3.3: Convergence estimates for ||Eω|| using SDIRK-3, F-relaxation and m =
2. The point clouds indicate numerical eigenvalues of δtG colored by ||Eω|| for the
problem size 3 · 212 × 212. Left: Pure advection, η = 0. Right: Advection with
third-order artificial dissipation according to (3.6). Note the power law scaling of the
horizontal axis.

depicts this for the case of F-relaxation and m = 2. For the other problem sizes, see
Figure B.4 in Supplemental Materials. The plots indicate a worst case convergence
factor of ≈ 0.87 for a small set of eigenvalues near the origin, which is pessimistic
when compared to the results in Table 3.5.

Next we consider the diffusion-dominated case (3.5b). The results, shown in Table
3.6, are similar to those for the pure diffusion case (with SDIRK-3) from Section 3.1.2.

In Table 3.7 we give the results for the case of third order artificial dissipation
(3.5c)-(3.6). In particular, we wish to see if the results from one-dimensional advection
with high-order artificial dissipation carry-over, i.e., if scalable MGRIT results are
possible. We give both the average and (maximal) convergence factors because they
differ significantly in this case, possibly because the theory no longer applies. When
the average convergence factor is less than one (even when the maximal is greater
than one), the method converged. The two-level results for m = 2, 4, 8 appear to be
scalable and fast, especially for FCF-relaxation.

In order to compare our experimental results with our theory, we plot the numer-
ically computed eigenvalues of δtG for the largest problem size in Figure 3.3 (right).
See Figure B.5 in Supplemental Materials for the other problem sizes. The theoreti-
cally predicted convergence value of ≈ 0.16 for m = 2 is accurate.

Moving to the multi-level F-cycle results in Table 3.7, convergence deteriorates,
but still occurs. While improving this case is future work, we note that there is
promise for a scalable solver because some of the numerical results may indicate an
asymptote. While memory constraints limited us from running more grid sizes (our
spatial solver is serial), we were able to run four grid sizes for FCF, F-cycles and
m = 16. Here, we observed the experimental average convergence rates of 0.151,
0.194, 0.202 and 0.2383, i.e., almost scalable results.

4. Conclusions. In conclusion, we have developed a sharp two-grid convergence
theory for linear problems and MGRIT, where the F-relaxation case is equivalent to
parareal. The theory assumes that the temporal grid is uniform and that the coarse
and fine time-grid propagators can be diagaonalized by the same set of eigenvectors,
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m / Size 3 · 28 × 210 3 · 210 × 211 3 · 212 × 212

2 0.147 0.152 0.151

Two-level
4 0.142 0.141 0.142

8 0.145 0.144 0.142

F-relaxation
32 0.192 0.156 0.146

2 0.148 0.152 0.151

F-cycles
4 0.142 0.142 0.142

8 0.145 0.144 0.142

32 0.192 0.156 0.146

2 0.004 0.004 0.004

Two-level
4 0.006 0.005 0.005

8 0.008 0.006 0.005

FCF-relaxation
32 0.034 0.018 0.008

2 0.005 0.004 0.004

F-cycles
4 0.006 0.005 0.004

8 0.008 0.006 0.005

32 0.034 0.018 0.008

Table 3.6: Asymptotic convergence rates for MGRIT with F-relaxation and then with
FCF-relaxation, for the case of advection with constant diffusion with η = 0.1, Q3

elements and SDIRK-3.

which is often the case.
The theory provides a novel description of how FCF-relaxation improves the

convergence and stability of MGRIT and how the coarsening factor m impacts the
method. For parabolic problems (i.e, problems where the negative real part of the
spatial eigenvalues dominate), the convergence is excellent. For the case of FCF-
relaxation, convergence is robust regarding changes in m, allowing for large coars-
ening factors which reduce memory overhead and communication. The benefit of
FCF-relaxation grows with the order of the implicit Runge-Kutta method, e.g., the
convergence rate for SDIRK-3 is below 0.01.

For the case when the imaginary part of the spatial eigenvalue dominates, the
results are less satisfactory. Some cases, such as m = 2 and backward Euler (SDIRK-
1) converge, but many other cases diverge. For the general case of complex spatial
eigenvalues, the results are mixed. Considering the example of 1D advection with ar-
tificial dissipation, convergence is restored in some cases for SDIRK-2 and SDIRK-3
when m = 2. In particular, the use of FCF-relaxation is critical for the two-level con-
vergence to carry over the multi-level F-cycle results. We note that showing scalable
behavior for advective problems, even in these limited cases, is a novel contribution.

Lastly, this work explores how the convergence of MGRIT compares to the stabil-
ity of the chosen time-stepping scheme. Overall, a stable time-stepping scheme does
not necessarily imply convergence of MGRIT, although MGRIT with FCF-relaxation
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m / Size 3 · 28 × 210 3 · 210 × 211 3 · 212 × 212

2 0.123 (0.150) 0.130 (0.151) 0.130 (0.151)

Two-level
4 0.120 (0.141) 0.120 (0.141) 0.120 (0.141)

8 0.124 (0.143) 0.125 (0.144) 0.125 (0.145)

F-relaxation
32 0.468 (0.833) 0.777 (0.957) 0.856 (1.001)

2 0.130 (0.287) 0.130 (5.607) 0.521 (32.14)

F-cycles
4 0.120 (1.750) 0.232 (3.841) 0.586 (9.421)

8 0.132 (1.864) 0.315 (3.045) 1.060 (3.207)

32 0.468 (0.833) 0.777 (0.957) 0.856 (1.005)

2 0.002 (0.004) 0.002 (0.004) 0.002 (0.004)

Two-level
4 0.004 (0.007) 0.004 (0.007) 0.004 (0.007)

8 0.024 (0.049) 0.024 (0.053) 0.024 (0.054)

FCF-relaxation
32 0.184 (0.689) 0.421 (0.795) 0.700 (0.864)

2 0.002 (0.007) 0.010 (0.065) 0.043 (0.575)

F-cycles
4 0.021 (0.043) 0.071 (1.123) 0.161 (1.619)

8 0.049 (0.356) 0.114 (1.558) 0.270 (1.963)

32 0.184 (0.689) 0.421 (0.795) 0.700 (0.864)

Table 3.7: The average and (maximal) convergence rates for MGRIT with F-relaxation
and then with FCF-relaxation, for the case of advection and artificial dissipation
(3.5c)-(3.6). Here, ε = (10h0)−3, with Q3 elements and SDIRK-3.

always converges for the diffusion dominated problems considered here.
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Supplemental Materials A. Fourier symbols of centered difference ap-
proximations.

To analyze spatially periodic solutions of partial differential equations with con-
stant coefficients it is convenient to use the Fourier basis. For simplicity we restrict
the presentation to one space dimension. The material in this section is essentially
a summary of well-known results that, for example, can be found in the book by
Gustafsson, Kreiss and Oliger [13].

A.1. Fourier series expansion of a periodic grid function. Let w(x) :
R→ C be a 2π-periodic function of x, i.e., w(x+ 2π) = w(x). We introduce a spatial
grid with constant step size h = 2π/Nx and grid points xj = jh, j = 0,±1,±2, . . ..
Let wj = w(xj) be a grid function where wj = wj+Nx

because w(x) is 2π-periodic.
Assume for simplicity that Nx is even. Then the (normalized) Fourier series expansion
of wj is given by

(A.1) wj =

Nx/2∑
ω=−Nx/2+1

ŵωs
(ω)
j , s

(ω)
j =

1√
2π
eiωxj .

We define the discrete scalar product between grid functions uj and vj ,

(u, v)h := h

Nx−1∑
j=0

ūjvj .

It is straightforward to verify (s(p), s(r))h = δpr, where p and r are integers and δpr
is the Kronecker delta, i.e., δpr = 0 if p 6= r and δrr = 1. Hence, the grid functions
{s(−Nx/2+1), s(−Nx/2+2), . . . , s(Nx/2)} form an orthonormal basis of the form (2.31)
and the Fourier coefficients satisfy

ŵω = (s(ω), w)h.

A.2. Difference approximations of d/dx. The centered finite difference ap-
proximations of d/dx, for accuracy orders 2p = 2, 4, 6 and grid function q, are given
by

D
{2}
1 qj = D0qj ,(A.2)

D
{4}
1 qj = D0

(
I − h2

6
D+D−

)
qj ,(A.3)

D
{6}
1 qj = D0

(
I − h2

6
D+D− +

h4

30
D2

+D
2
−

)
qj ,(A.4)

where D+qj = (qj+1 − qj)/h is the upwind difference operator, D−qj = D+qj−1 is
the downwind difference operator and D0 = 0.5(D+ + D−) is the classic centered
difference operator.

A dissipative approximation of d/dx can be obtained by combining the centered
formulae with an artificial dissipation term,

(A.5) D
{2p,ε}
1 qj := D

{2p}
1 qj + εh2p−1R{2p}qj , ε ≥ 0.

The artificial dissipation terms satisfy

R{2}qj = D+D−qj ,(A.6)

R{4}qj = −D2
+D

2
−qj ,(A.7)

R{6}qj = D3
+D

3
−qj .(A.8)
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The truncation error in the formula (A.5) is O(h2p) when ε = 0, but is reduced to
O(h2p−1) for ε > 0.

The difference formula (A.5) can be analyzed by Fourier decomposition. Note
that

D0s
(ω)
j =

1

2h

(
eiωh − e−iωh

)
eiωxj =

i

h
sin(ξ)s

(ω)
j ,(A.9)

D+D−s
(ω)
j =

1

h2

(
eiωh − 2 + e−iωh

)
eiωxj = − 4

h2
sin2(ξ/2)s

(ω)
j ,(A.10)

where ξ = ωh is the scaled wave number. Because −Nx/2 + 1 ≤ ω ≤ Nx/2, we have
−π < ξ ≤ π. For a periodic grid function wj with Fourier expansion (A.1), this means
that the periodic grid function D0wj has Fourier expansion

D0wj =

Nx/2∑
ω=−Nx/2+1

ŵωD0s
(ω)
j =

Nx/2∑
ω=−Nx/2+1

(
i

h
sin(ξ)ŵω

)
s

(ω)
j , ξ = ωh.

We call i
h sin(ξ) the Fourier symbol, which acts like an eigenvalue for wave number ω.

We conclude that the basic difference operators D0 and D+D− have Fourier symbols

(A.11) D̂0(ξ) =
i

h
sin(ξ), D̂+D−(ξ) = − 4

h2
sin2(ξ/2).

The Fourier symbol of (A.5) can be written

(A.12) D̂
{2p,ε}
1 (ξ) = D̂

{2p}
1 (ξ) + εh2p−1R̂{2p}(ξ),

and the basic Fourier symbols (A.11) can be combined to obtain the Fourier symbols

D̂
{2p}
1 and R̂{2p}. This results in

D̂
{2,ε}
1 (ξ) =

1

h

[
i sin(ξ)− 4ε sin2(ξ/2)

]
,(A.13)

D̂
{4,ε}
1 (ξ) =

1

h

[
i sin(ξ)

(
1 +

2

3
sin2(ξ/2)

)
− 16ε sin4(ξ/2)

]
,(A.14)

D̂
{6,ε}
1 (ξ) =

1

h

[
i sin(ξ)

(
1 +

2

3
sin2(ξ/2) +

8

15
sin4(ξ/2)

)
− 64ε sin6(ξ/2)

]
.(A.15)

The above Fourier symbols can be used to analyze the spectrum of the operator G
in (2.41). For example, if the hyperbolic PDE ut = ux is discretized by the dissipative
finite difference method of order 2p, it leads to a system of ODEs for the periodic grid
function qj(t) ≈ u(xj , t) where the Fourier symbol is given by (A.13)-(A.15). In other
words, the eigenvalues of the operator G in (2.41) satisfy

(A.16) γ{2p,ε}ω = D̂
{2p,ε}
1 ((ω −Nx/2)h), ω = 1, 2, . . . , Nx.

A.3. Difference approximations of d2/dx2. A compact centered finite differ-
ence approximation of d2/dx2 of order 2p = 2, 4, 6 is given by

D
{2}
2 qj = D+D−qj ,(A.17)

D
{4}
2 qj = D+D−

(
I − h2

12
D+D−

)
qj ,(A.18)

D
{6}
2 qj = D+D−

(
I − h2

12
D+D− +

h4

90
(D+D−)2

)
qj .(A.19)
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Applying the same technique as before leads to the symbols

D̂
{2}
2 (ξ) =

−4

h2
sin2(ξ/2),(A.20)

D̂
{4}
2 (ξ) =

−4

h2
sin2(ξ/2)

[
1 +

4

3
sin2(ξ/2)

]
,(A.21)

D̂
{6}
2 (ξ) =

−4

h2
sin2(ξ/2)

[
1 +

4

3
sin2(ξ/2) +

8

45
sin4(ξ/2)

]
.(A.22)

Supplemental Materials B. Additional numerical results.
We now give our supplemental numerical results, as referenced from the text.

Two-dimensional heat equation results. Table B.1 gives results for the two-
dimensional heat equation, see Section 3.1.1. The domain is ([0, π])2× [0, 49.35], with
an initial condition of u(t=0) = sin(x) sin(y). The ratio δt/h

2 remains 10.0. Standard
central second-order finite-differencing in space is used, otherwise, the tests are the
same as for one-dimension.

m / Size (25)2 × 210 (26)2 × 212 (27)2 × 214 (28)2 × 216

4 0.203 0.197 0.199 0.199

Two-level 8 0.203 0.240 0.244 0.244

F-relaxation
32 0.241 0.224 0.274 0.280

4 0.332 0.362 0.393 0.406

V-cycles 8 0.251 0.307 0.318 0.314

32 0.241 0.225 0.275 0.286

4 0.073 0.078 0.078 0.078

Two-level 8 0.093 0.087 0.094 0.093

FCF-relaxation
32 0.013 0.103 0.095 0.106

4 0.097 0.102 0.105 0.107

V-cycles 8 0.093 0.086 0.092 0.091

32 0.013 0.103 0.095 0.106

Table B.1: Two-dimensional heat equation, asymptotic convergence rates for MGRIT
with F-relaxation and then with FCF-relaxation.
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Three-dimensional heat equation results. Table B.2 gives results for the
three-dimensional heat equation using Q1 elements and SDIRK-2, see Section 3.1.2.

m / Size 29 × 210 212 × 211 215 × 212 ||E∆|| ≤

2 0.004 0.012 0.037 0.295

Two-level
4 0.016 0.046 0.123 0.261

8 0.051 0.129 0.239 0.261

F-relaxation
32 0.237 0.248 0.250 0.261

2 0.300 0.319 0.322 -

V-cycles
4 0.227 0.270 0.269 -

8 0.225 0.240 0.250 -

32 0.237 0.248 0.250 -

2 0.002 0.005 0.007 0.012

Two-level
4 0.007 0.009 0.009 0.010

8 0.009 0.009 0.009 0.011

FCF-relaxation
32 0.009 0.009 0.010 0.011

2 0.006 0.007 0.007 -

V-cycles
4 0.007 0.009 0.008 -

8 0.009 0.009 0.009 -

32 0.009 0.009 0.010 -

Table B.2: Three-dimensional heat equation with Q1 elements and SDIRK-2, asymp-
totic convergence rates for MGRIT with F-relaxation and then with FCF-relaxation.
The theoretical bound appears in the final column.
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B.1. Example solution for the finite-element heat equation problems.
Figure B.1 gives an example solution at an intermediate time for the heat equation
considered in Section 3.1.2 and the mesh from the MFEM data file pipe-nurbs.mesh.

Fig. B.1: Example solution for an intermediate t using pipe-nurbs.mesh. The right
image depicts a cut-away of the left image.
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B.2. Convergence estimates for one-dimensional advection. In Figure
B.2 we give convergence estimates for one-dimensional advection with artificial dissi-
pation and F-relaxation, see Section 3.2.1.
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(c) SDIRK-1, low-order γ2,ε
ω , ε = 0.5

10−3 10−2 10−1 100

Fourier frequency

10−3

10−2

10−1

0.5

100

101

‖E
ω
‖B

ou
n

d

(d) SDIRK-3, high-order γ4,ε
ω , ε = 0.5
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(e) SDIRK-1, low-order γ2,ε
ω , ε = 4
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(f) SDIRK-3, high-order γ4,ε
ω , ε = 4

Fig. B.2: ‖EFω ‖ as function of the scaled Fourier frequency ξ = ωh for ξ ∈ [0 < ξ ≤ π],
m = 2, 32 and δt/h = 1, 4. Note that ‖EFω ‖ is a symmetric function of ξ and reflects
around the origin.
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One-dimensional advection equation with artificial dissipation. Table
B.3 gives results for the one-dimensional advection equation with artificial dissipation,
see Section 3.1.2.

ε / Size 28 × 28 29 × 29 210 × 210 211 × 211

0 0.452 0.458 0.461 0.462

Two-level 0.5 0.390 0.400 0.405 0.406

F-relaxation
4.0 0.219 0.221 0.225 0.226

0 0.546 0.666 0.778 0.861

F-cycles 0.5 0.432 0.598 0.650 0.811

4.0 0.262 0.292 0.350 0.555

0 0.276 0.383 0.441 0.462

Two-level 0.5 0.243 0.352 0.392 0.408

FCF-relaxation
4.0 0.166 0.203 0.215 0.219

0 0.261 0.355 0.451 0.523

F-cycles 0.5 0.231 0.367 0.401 0.450

4.0 0.149 0.201 0.262 0.316

Table B.3: One-dimensional advection equation with artificial dissipation, asymptotic
convergence rates for MGRIT with F-relaxation and then with FCF-relaxation; m =
2, Nt = Nx, δt/h = 4 for various ε.
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Initial condition for the finite-element advection-diffusion problems.
Figure B.3 gives an example initial condition for the advection(-diffusion) problem
considered in Section 3.2.3 and the mesh from the MFEM data file
data/periodic-hexagon.mesh.

Fig. B.3: Initial condition for the advection(-diffusion) problem using
data/periodic-hexagon.mesh.
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Convergence estimates for finite-element discretizations of advection
and artificial dissipation. Figures B.4 and B.5 give the full version of Figure 3.3
from Section 3.2.3. Note that the contour plots in both Figures are variants of Figure
2.3 (e).

-83 -73 -63 -53 -43 -33 -23 -13 03
1.0

0.5

0.0

0.5

1.0
max=0.8268

10-3

10-2

10-1

100

-83 -73 -63 -53 -43 -33 -23 -13 03
1.0

0.5

0.0

0.5

1.0
max=0.8719

10-3

10-2

10-1

100

-83 -73 -63 -53 -43 -33 -23 -13 03
1.0

0.5

0.0

0.5

1.0
max=0.8748

10-3

10-2

10-1

100

-83 -73 -63 -53 -43 -33 -23 -13 03
1.0

0.5

0.0

0.5

1.0

10-3

10-2

10-1

100

Fig. B.4: Convergence estimates ||Eω|| for the pure advection case η = 0 using SDIRK-
3, F-relaxation and m = 2. The point clouds use numerical eigenvalues of δtG colored
by ||Eω|| for the problem sizes 3 · 28 × 210 (top left), 3 · 210 × 211 (top right), and
3 · 212 × 212 (bottom left). The contour plot (bottom right) plots ||Eω|| as a function
in the complex plane. Note that the x-axis uses power law scaling.
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Fig. B.5: Convergence estimates ||Eω|| for the advection case with third-order artificial
dissipation from equation (3.6) using SDIRK-3, F-relaxation and m = 2. The point
clouds use numerical eigenvalues of δtG colored by ||Eω|| for the problem sizes 3 ·28×
210 (top left), 3 ·210×211 (top right), and 3 ·212×212 (bottom left). The contour plot
(bottom right) plots ||Eω|| as a function in the complex plane. Note that the x-axis
uses power law scaling.
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